2016 Annual Drinking Water Quality Report (Consumer Confidence Report) **Oaks of Trinity** PWS # TX1460156 936-756-7400 Annual Water Quality Report for the period of January 1 to December 31, 2016 This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water. For more information regarding this report contact: Name: Ronald L. Payne 936-756-7400 En Español: Este informe incluye información importante sobre el agua potable. Si tiene preguntas o comentarios sobre éste informe en español, favor de llamar al tel. 936-756-7400 para hablar con una persona bilingüe en español. ## **SPECIAL NOTICE** ### Required language for ALL community public water supplies: The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick-up substances resulting from the presence of animals or from human activity. Drinking water, including bottle water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protections for public health. Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office. You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptospondium are available from the Safe Drinking Water Hotline at (800-426-4791). If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and - Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems. • Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities. Information about Secondary Constituents - Many constituents (such as calcium, sodium, or iron) which are often found in drinking water, can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondaries are not required to be reported in this document but they may greatly affect the appearance and taste of your water. Information about Source Water Assessments: TCEQ completed an assessment of your source water and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system is based on this susceptibility and previous sample data. Any detections of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system contact Ron Payne. Our ground water source is from the Gulf Coast Aquifers. For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL: https://www.tceq.texas.gov/gis/swaview Further details about sources and source water, assessments are available in Drinking Water Watch at the following URL: http://dww2.tceq.texas.gov/DWW/ **Water Quality Test Results** **Definitions**: Avg: Maximum Contaminant Level or MCL: Level 1 Assessment: Maximum Contaminant Level Goal or MCLG: Level 2 Assessment: Maximum residual disinfectant level or Maximum residual disinfectant level goal or MRDLG: MFL: na: mrem NTU: pCi/L ppb: ppm: Treatment Technique or TT: ppt: The following tables contain scientific terms and measures, some of which may require explanation. Regulatory compliance with some MCLs are based on running annual average of monthly sample The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. The level of a contaminant in drinking water below which there is no known or expected risk to health. MGLGs allow for a margin of safety. A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Million fibers per liter (a measure of asbestos) not applicable millirems per year (a measure of radiation absorbed by the body) Nephelometric turbidity units (a measure of turbidity) Picocuries per liter (a measure of radioactivity) micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water milligrams per liter or parts per million - or one ounce in 7,350 gallons of water A required process intended to reduce the level of a contaminant in drinking water. parts per trillion, or nanograms per liter (ng/L) parts per quadrillion, or pictograms per liter (pg/L) Page 1 of 4 | Maximum
Contaminan
Level
Goal | Total Coliform Maximum t Contaminant Level | Highest No. of
Positive | Fecal Coliform o
Coli Maximun
Contaminant Le | n E | l No. of Pos
Coli or Feca
iform Samp | 31 | Vid | olation | Likely Source of
Contamination | | |--|--|---|--|-----------------------|--|----------|---------------------|----------------|--|--| | 0 | 1 positive monthly sample | There were no TCR detections for this system in this CCR period | 0 | | 0 | | | Y | Naturally present in the environment. | | | Regulated Co | ntaminants | | | | | | | | | | | Collection
Date | Disinfectants and Disinfection
ByProducts | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | 1 - | Inits of
leasure | Violations | Likely Source of
Contaminant | | | 2010 | Haloacetic Acids (HAAS)* | Levels lower than detect level | 0 - 0 | No goal for the total | or 60 | 60 ppb | | N | By-product of drinking wate chlorination. | | | Not all sample
should occur is | results may have been used for n the future | calculating the Highest Lev | el Detected because | some result | s may be pa | rt of ar | evaluation | n to determine | where compliance sampling | | | 2016 | Total Trihalomethanes
(TThm) | 3.5 | 3.5 – 3.5 | No goal for the total | | | ppb | N | By-product of drinking wate
disinfection. | | | Inorganic Co | ntominanto | | | | | | | | | | |------------------------------|---|--|--------------------------------|-------------|-----------|---------------------|---------------------|--|--|--| | Collection
Date | Disinfectants and Disinfection ByProducts | Highest Level
Detected | Range of
Levels
Detected | MCLG | MCL | Units of
Measure | I Molatione | Likely Soun | ce of Contaminant | | | 07/06/2010 | Antimony | Levels lower
than detect
level | 0 - 0 | 6 | 6 | ppb | N | | Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder, test | | | 07/06/2010 | Arsenic | Levels lower
than detect
level | 0-0 | 0 | 10 | ppb | N | Erosion of r | Erosion of natural deposits; Runoff from orchar
Runoff from glass and electronics production | | | 2016 | Barium | 0.183 | 0.183 - 0.183 | 2 | 2 | ppm | N | refineries; E | Discharge of drilling wastes; Discharge from refineries; Erosion of natural deposits. | | | 07/06/2010 | Beryllium | Levels lower
than detect
level | 0-0 | 4 | 4 | ppb | N | | rom metal refineries and coal-burr
ischarge from electrical, aerospac | | | 07/06/2010 | Cadmium | Levels lower
than detect
level | 0 - 0 | 5 | 5 | ppb | N | | f galvanized pipes; Erosion of nata
scharge from metal refineries; run
batteries. | | | 07/06/2010 | Chromium | Levels lower
than detect
level | 0 - 0 | 100 | 100 | ppb | N | Discharge f
natural dep | rom steel and pulp mills; Erosion cosits. | | | 05/07/2014 | Cyanide | 10 | 10 – 10 | 200 | 200 | ppb | N | Discharge f | rom plastic and fertilizer factories;
rom steel/metal factories. | | | 2016 | Fluoride | 0.31 | 0.31 – 0.31 | 4 | 4.0 | ppm | N | promotes st | Erosion of natural deposits; Water additive white promotes strong teeth; Discharge from fertilizer aluminum factories. | | | 07/06/2010 | Mercury | Levels lower
than detect
level | 0-0 | 2 | 2 | ppb | N | refineries a | Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland. | | | 2010 | Nitrate (measured as Nitrogen) | Levels lower
than detect
level | 0 - 0 | 10 | 10 | ppm | N | | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits. | | | Nitrate Adviso | ry – Nitrate in drinking water a | levels above 10 ppm | is a health risk for in | fants or le | ss than s | ix months of | age. High nitrate | levels in drinking | g water can cause blue baby syndroi | | | 07/06/2010 | Selenium | Levels lower
than detect
level | 0 – 0 | 50 | 50
50 | ppb | N N | ask advice from your health care provider. Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mir | | | | 07/06/2010 | Thallium | Levels lower
than detect
level | 0-0 | 0.5 | 2 | ppb | N | | Discharge from electronics, glass, and Leachin from ore-processing sites; drug factories. | | | Radioactive | Contaminants | | | | | | | | | | | Collection
Date | Disinfectants and
Disinfection
ByProducts | Highest Level
Detected | Range of
Levels
Detected | MCLG | MCL | Units of
Measure | I Wasting | Likely Source | ce of Contaminant | | | 07/292008 | Beta/photon emitters | Levels lower
than detect
level | 0-0 | 0 | 4 | mrem/yi | n N | Decay of na | tural and man-made deposits. | | | 07/292008 | Gross alpha excluding radon and uranium | Levels lower
than detect
level | 0-0 | 0 | 15 | pCi/L | N | Erosion of r | atural deposits. | | | ynthetic Orga | nic Contaminants includir | g pesticides | | - | , | | | | | | | | Disinfectants and | Highest Level
Detected | Range of
Levels
Detected | MCLG | | MCL | Units of
Measure | Violations | Likely Source of Contaminant | | | Collection
Date | Disinfection ByProducts | | Detected | | | | | AI | N Runoff from herbicide used on row crops. | | | | Alachlor | Levels lower
than detect
level | 0 - 0 | 0 | | 2 | ppb | IN | | | | Date | • | than detect
level
Levels lower
than detect
level | | 3 | | 3 | ррб | N | crops. | | | Date 2010 | Alachlor | than detect level Levels lower than detect level Levels lower than detect level | 0-0 | | | | | | crops. Runoff from herbicide used on recrops. Leaching from linings of water | | | 2010
2010 | Alachlor
Atrazine | than detect
level Levels lower
than detect
level Levels lower
than detect | 0-0 | 3 | | 3 | ppb | N | crops. Runoff from herbicide used on recrops. Leaching from linings of water | | | 2010
2010
2010
2010 | Alachlor Atrazine Benzo (a) pyrene | than detect level Levels lower than detect level Levels lower than detect level Levels lower than detect | 0-0 | 3 | | 3 200 | ppb | N
N | crops. Runoff from herbicide used on recrops. Leaching from linings of water storage tanks and distribution lin | | | | | than detect | <u> </u> | | | I | | | | |--------------------|--|--------------------------------------|--------------------------------|------------|-----|---------------------|------------|---|--| | | | level | | | | | | | | | 2010 | Di (2-ethylhexyl) phthalate | Levels lower
than detect
level | 0-0 | 0 | 6 | ppb | N | Discharge from rubber and chemical factories | | | 2010 | Dibromochloropropane
(DBCP) | Levels lower
than detect
level | 0 – 0 | 0 | 0 | ppt | N | Runoff/leaching from soil furnigant used on soybeans, cotton, pineapples, and orchards. | | | 2010 | Endrin | Levels lower
than detect
level | 0-0 | 2 | 2 | ppb | N | Residue of banned insecticide. | | | 2010 | Ethylene dibromide | Levels lower
than detect
level | 0 – 0 | 0 | 50 | ppt | N | Discharge from petroleum refineries. | | | 2010 | Heptachlor | Levels lower
than detect
level | 0-0 | 0 | 400 | ppt | N | Residue of banned termiticide. | | | | | | | | | | | | | | 2010 | Heptachlor epoxide | Levels lower
than detect
level | 0-0 | 0 | 200 | ppt | N | Breakdown of heptachlor. | | | 2010 | Hexachlorobenzene | Levels lower
than detect
level | 0-0 | 0 | 1 | ppb | N | Discharge from metal refineries and agricultural chemical factories. | | | 2010 | Hexachlorocyclopentadiene | Levels lower
than detect
level | 0-0 | 50 | 50 | ppb | N | Discharge from chemical factories. | | | 2010 | Lindane | Levels lower
than detect
level | 0-0 | 200 | 200 | ppt | N | Runoff/leaching from insecticide used on cattle, lumber, gardens. | | | 2010 | Methoxychlor | Levels lower
than detect
level | 0-0 | 40 | 40 | ppb | N | Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, livestock. | | | 2010 | Pentachlorophenol | Levels lower
than detect
level | 0-0 | 0 | 1 | ppb | N | Discharge from wood preserving factories. | | | 2010 | Simazine | Levels lower
than detect
level | 0-0 | 4 | 4 | ppb | N | Herbicide runoff. | | | 2010 | Toxaphene | Levels lower
than detect
level | 0-0 | 0 | 3 | ppb | N | Runoff/leaching from insecticide used on cotton and cattle. | | | Volatile Orga | anic Contaminants | | | | | | | | | | Collection
Date | Disinfectants and
Disinfection ByProducts | Highest Level
Detected | Range of
Levels
Detected | MCLG | MCL | Units of
Measure | Violations | Likely Source of Contaminant | | | 07/06/2010 | 1,1,1 - Trichloroethane | Levels lower
than detect
level | 0-0 | 200 | 200 | ppb | N | Discharge from metal degreasing sites and other factories. | | | 07/06/2010 | 1,1,2 - Trichloroethane | Levels lower
than detect
level | 0-0 | 3 | 5 | ppb | N | Discharge from industrial chemical factories. | | | 07/06/2010 | 1,1 - Dichloroethylene | Levels lower
than detect
level | 0-0 | 7 | 7 | ppb | N | Discharge from industrial chemical factories. | | | 07/06/2010 | 1,2,4 - Trichlorobenzene | Levels lower
than detect
level | 0-0 | 70 | 70 | ppb | N | Discharge from textile-finishing factories. | | | 07/06/2010 | 1,2 - Dichloroethane | Levels lower
than detect
level | 0-0 | 0 | 5 | ppb | N | Discharge from industrial chemical factories. | | | 07/06/2010 | 1,2 - Dichloropropane | Levels lower
than detect
level | 0-0 | 0 | 5 | ppb | N | Discharge from industrial chemical factories. | | | 07/06/2010 | Benzene | Levels lower
than detect
level | 0-0 | 0 | 5 | ppb | N | Discharge from factories; Leaching from gas storage tanks and landfills. | | | 07/06/2010 | Carbon Tetrachloride | Levels lower
than detect
level | 0-0 | 0 | 5 | ppb | N | Discharge from chemical plants and other industrial activities. | | | 07/06/2010 | Chlorobenzene | Levels lower
than detect
level | 0 – 0 | 100 | 100 | ppb | N | Discharge from chemical and agricultural chemical factories. | | | 07/06/2010 | Dichloromethane | Levels lower
than detect
level | 0-0 | 0 | 5 | ppb | N | Discharge from pharmaceutical and chemical factories. | | | 07/06/2010 | Ethylbenzene | Levels lower
than detect
level | 0-0 | 700 | 700 | ppb | N | Discharge from petroleum refineries. | | | 07/06/2010 | Styrene | Levels lower
than detect
level | 0-0 | 100 | 100 | ppb | N | Discharge from rubber and plastic factories; Leaching from landfills. | | | 07/06/2010 | Tetrachloroethylene | Levels lower
than detect
level | 0-0 | 0 | 5 | ppb | N | Discharge from factories and dry cleaners. | | | 07/06/2010 | Toluene | Levels lower
than detect
level | 0-0 | 1 | 1 | ppm | N | Discharge from petroleum factories. | | | 07/06/2010 | Trichloroethylene | Levels lower
than detect
level | 0-0 | 0 | 5 | ppb | N | Discharge from metal degreasing sites and other factories. | | | 07/06/2010 | Vinyl Chloride | Levels lower than detect | 0-0 | 0 | 2 | ppb | N | Leaching from PVC piping; Discharge from plastics factories. | | | (1460156/Oaks | of Trinity | | Pa | age 3 of 4 | | | 2016An | nual Drinking Water Quality Report | | | | | level | | | T | I | | | |------------|------------------------------------|--------------------------------------|-----|-----|-----|-----|---|---| | | | | | | ļ | | | | | 07/06/2010 | Xylenes | Levels lower
than detect
level | 0-0 | 10 | 10 | ppm | N | Discharge from petroleum factories;
Discharge from chemical factories. | | 07/06/2010 | Cis – 1,2 - Dichloroethylene | Levels lower
than detect
level | 0-0 | 70 | 70 | ppb | N | Discharge from industrial chemical factories. | | 07/06/2010 | o – Dichlorobenzene | Levels lower
than detect
level | 0-0 | 600 | 600 | ppb | N | Discharge from industrial chemical factories. | | 07/06/2010 | p – Dichlorobenzene | Levels lower
than detect
level | 0-0 | 75 | 75 | ppb | N | Discharge from industrial chemical factories. | | 07/06/2010 | trans – 1,2 -
Dicholoroethylene | Levels lower
than detect
level | 0-0 | 100 | 100 | ppb | N | Discharge from industrial chemical factories. | | Lead & Copper | | | | | | | | | |--------------------|--------|------|----------------------|--------------------|--------------------|---------------------|------------|---| | Collection
Date | | MCLG | Action Level
(AL) | 90th
Percentile | # Sites Over
AL | Units of
Measure | Violations | Likely Source of Contaminant | | 2016 | Copper | 1.3 | 1.3 | 0.281 | 0 | ppm | N | Erosion of natural deposits; Leaching from
wood preservatives; Corrosion of
household plumbing systems. | | 2016 | Lead | 0 | 15 | 0.264 | 0 | ppb | N | Corrosion of household plumbing systems;
Erosion of natural deposits | | Dis | infec | tant R | esidua | l Table | |-----|-------|--------|--------|---------| |-----|-------|--------|--------|---------| | | | Average | Minimum | Maximum | | | Unit of | Violation | Likely Source of | |--------------|------|---------|---------|---------|------|-------|---------|-----------|------------------| | Disinfectant | Year | Level | Level | Level | MRDL | MRDLG | Measure | (Y/N) | Contamination | | | | | | | | | | | Water additive | | 1 | | | | | | | [| | used to control | | Chlorine | 2016 | 0.79 | 0.45 | 1.21 | 4.0 | 4.0 | ppm | N | microbes. | ### **Violations Table** #### Chlorine (DLQOR). Some people who use water containing chlorine well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the MRDL could experience stomach discomfort. **Violation Begin Violation End Violation Type** 07/01/2016 09/30/2016 | Violation Explanation | |--| | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the | | quality of our drinking water during the period indicated. | ## **Lead and Copper Rule** Disinfectant Level Quarterly Operating Report The Lead and Copper Rule protects public health by minimizing lead and copper levels in drinking water, primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead and copper | Violation Type | Violation Begin | Violation End | Violation Explanation | |------------------------------------|-----------------|---------------|---| | FOLLOW-UP OR ROUTINE TAP M/R (LCR) | 10/01/2015 | 2016 | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. | | FOLLOW-UP OR ROUTINE TAP M/R (LCR) | 10/01/2016 | 2016 | We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated. | | LEAD CONSUMER NOTICE (LCR) | 12/30/2016 | 2016 | We failed to provide the results of lead tap water monitoring to the consumers at the location water was tested. These were supposed to be provided no later than 30 days after learning the results. | ## **Public Notification Rule** The Public Notification Rule helps to ensure that consumers will always know if there is a problem with their drinking water. These notices immediately alert consumers if there is a serious problem with their drinking water (e.g., a | Violation Type | Violation Begin | Violation End | Violation Explanation | |--|-----------------|---------------|--| | PUBLIC NOTICE RULE LINKED TO VIOLATION | 02/08/2016 | 2016 | We failed to adequately notify you, our drinking water consumers, about a violation of the drinking water regulations. |